High Speed Practical Polymer Optical Waveguides Demonstrated in 24 ch x 16 Gbps Optical Interconnection Module for Computercom System

COIN Business Development Dept. Utsunomiya, JAPAN

SUMITOMO BAKELITE CO., LTD.

Terms of Use

The contents of this document are based on the results of experiments, investigations and analyses conducted by Sumitomo Bakelite Co., Ltd., and/or the published information from general sources. Sumitomo Bakelite Co., Ltd. does not intend to guarantee the values of data in this document. Prior to use of the products and/or the information included in this document, please conduct tests to check if the products meet your requirements and confirm the accuracy of the information. Except the published information from general sources, the contents of this document are property of Sumitomo Bakelite Co., Ltd.

Please contact us when you wish to use the contents for the purpose besides our use.

Ideal Optical Interconnection Structure On-board Level²

Polymer waveguides are fabricated on PCB/ embedded in PCB

Model of O/E board example

<u>Merits</u>

- \checkmark High bandwidth,
- ✓ Low-power dissipation
- ✓ Compact-size
- ✓ Available conventional SMT

Demerits as regards waveguide

- ✓ Reliability after reflow process✓ CTE mismatching
- ✓ Difference of allowance between electrical circuit and optical one

Proposal of Flex Optical/Electrical (0/E) Module ³

Comparison between Two Structures

		On board/ embedded waveguide in PCB	Flex O/E module		
Design	Limitation	Circuit design specifications	Thermal controls 🔅		
Fabrication	process	One by one, Continuous	Separate, Assembly		
	Control of narrow allowance	All points at optics area on/in the board	Waveguide 😳		
	Yield	Low (Exponential function 🕃 of each process)	High (Separated each 😳 process)		
	Optical connector	Hard to fabricate	Easy		
After fabrication	Mounting	conventional SMT	Some assembling process 🔅		
	Reliability	Hard requirements	Keeping each parts		
	Optics Repair	Depends on systems	Possible 😳		
Flex O/E module has a big potential to realize reasonably					

◆ 住友べークライト株式会社 SUMITOMO BAKELITE CO., LTD.

Demonstration of Simple Flex O/E Module

- Bi-directionally linking by waveguide
- Two flexible printed circuit (FPC) boards with 12ch Tx & 12ch Rx
- FPC and waveguide were independently fabricated and they are precisely hybridized by standard packaging process.

5

Optical Circuit Design (waveguide)

Unique Low Loss Polymer Waveguide

7

Merits of SB's Waveguides

Copyright©2013 Sumitomo Bakelite Co., Ltd. All Right Reserved.

SUMITOMO BAKELITE CO., LTD.

Electrical Board Design (FPC portion)

Electrical board design as a platform for O/E conversion

21	_			լμՠյ	
		Cross section	Design	Measure	
	Board size : 21.00 mm x 17.20 mm	Solder resist	15±10	15± 7	
		Cu plating	6± 3	14± 5	
2 1	: 2.50 mm	Cu foil	8±2		
	VD-TIA space	Polyimide	25± 3	25± 3	
Rx	: 1.82 mm	Cu foil	8±2	14± 5	
		Cu plating	6±3		
Single end Different	ial end				
		VCSEL-VD (Sing	<u>le end)</u>		
	Line width	: 50 μm	Line len	igth : 1 mi	m
		VD-Probe (Differe	ntial end)		
		ine/Space : 40/40	ım	-	
	Line length	: CH1,12 : 1.95 m	m / CH2,	11:3.55 mn	n
		CH3.10:4.60 m	m / CH4.9	: 5.75 mm	ו
		CH5,8 : 6.95 m	m / CH6,7	': 8.10 mm	۱

Related transmission loss was verified to be very small and negligible

Data Transmission Measurement

Measurement set-up

O/E transceiver module

Data Transmission @16Gbps/ch

- Wide eye opening was observed under the condition of data transmission at 16 Gbps/ch.
- Bit error ratio of every channel was less than 10⁻¹².
- Around 400Gbps data transmission(Tx1 \rightarrow Rx2,Tx2 \rightarrow Rx1) was successfully achieved.

Key Points of Flex O/E Module

Mirrors

To reduce the footprint of MCM, Optics & waveguide pitch need high-density

Conventional method

Cross sectional view

Crossed waveguide

- One of merits; waveguide can have crossed light paths in the same circuit plane.
- ✓ Hard to form uniformly✓ Bad crossing loss

✓ Hard to stack multi layers
✓ Increasing cost
✓ Hard to keep reliability

High density 45-degree Mirror

Copyright©2013 Sumitomo Bakelite Co., Ltd. All Right Reserved.

SUMITOMO BAKELITE CO., LTD.

Low Crossing Loss

Key Points of Flex O/E Module

Reliability of SB's Waveguides with 45-degree Mirrors¹⁶

	condition	result
High Temperature Reliability Test	1000Hr at 125 deg. C	± 0.3 dB*
Low Temp. Reliability Test	1000Hr at - 40 deg. C	± 0.3 dB*
High Temp. and Humidity Reliability Test	$85\pm$ 2 deg. C, $85\pm$ 5% (RH), 1000 Hr	±0.3dB*
High Temp. and Humidity Reliability Test	A. 75 deg. C, 85~95% RH, for 8hours B. R.T., 80~100% RH C40 deg. C, for 8hours 5 cycles	±0.3dB*
Thermal Shock Test	Temp.Time1) - $40 \pm 3 \deg$. C30min2) $85 \pm 3 \deg$. C30min100 cycles30min	±0.3dB*

* ± 0.3 dB = the margin of error in loss measurement

Comparison about Cost- effectiveness decrease increase same

		On board/ embedded waveguide PCB	Flex O/E module
Design	limitation	Circuit design specifications	Thermal controls
Fabrication	process	One by one, Continuous	Separate, Assembly 🔤 😥
	Control of narrow allowance	All points at optics area on/in the board	Care only Waveguide
	Yield	Low (Exponential function 🕃 of each process)	High (Separated each C) process)
	Optical connector	Hard to fabricate 🙁	Simple fabrication CC CC Process
After fabrication	Mounting	Easy (only SMT)	Some assembling proces 😒
	Reliability	Hard requirements	Keeping each parts
	Optics Repair	Depends on systems	Possible
		Total costs decrease	◆ は友べークライト株式会社

Type A) Optical WG Sheet /with 45° mirror

Type B) Optical WG Sheet with PMT connector

~12ch/250um pitch/1layer ~24ch/125um pitch/1layer Type C) Optical WG Sheet with MPO connector (under development)

