

European Cluster for Optical Interconnects (ECO) Workshop

Graded-Index Core Polymer Optical Waveguide for High-bandwidth-density On-Board Interconnect

TAKAAKI ISHIGURE FACULTY OF SCIENCE AND TECHNOLOGY KEIO UNIVERSITY

Performance Development in Super Computer

Ref. http://s.top500.org/static/lists/2013/06/TOP500_201306_Poster.png									
ТС	P5	01 3	PRESENTED BY UNIVERSITY OF MANNHEIM			Lawrence Berkeley National Laboratory		FIND OUT M WWW.top	ore at 5 00.org
NAME		SPECS			SITE	COUNTRY	CORES	R _{MAX} PFLOP/S	POWER MW
1 Tianhe	-2 (Milkyway-2)	NUDT, Intel Ivy Bridge (12C, 2.2 GHz) & Xeon Phi (57C, 1.1 GHz), Custom	n interconnect	NUDT	China	3,120,000	33.9	17.8
2 Titan		Cray XK7, Opteron 6274 (16C, 2.2 G	Hz) + Nvidia Kepler (14C, .732 GHz),	Custom interconnect	DOE/SC/ORNL	USA	560,640	17.6	8.3
3 Sequoi	a	IBM BlueGene/Q, Power BQC (16C,	1.60 GHz), Custom interconnect		DOE/NNSA/LLNL	USA	1,572,864	17.2	7.9
4 K comp	outer	Fujitsu SPARC64 VIIIfx (8C, 2.0GHz),	Custom interconnect		RIKEN AICS	Japan	705,024	10.5	12.7
5 Mira		IBM BlueGene/Q, Power BQC (16C,	1.60 GHz), Custom interconnect		DOE/SC/ANL	USA	786,432	8.16	3.95

PERFORMANCE DEVELOPMENT

KEIO UNIVERSITY

US GLADIO FOR

- PROJECTED -

Super Computers from IBM

Polymer waveguides for on-board application

4 Graded-Index (GI) Circular cores

Advantages of GI circular core

- ••••• Low propagation loss
- Low inter-channel crosstalk
- •••• High coupling efficiency with a fiber

Reduction of inter-channel crosstalk

Modes in GI profile propagate around the core center, which can reduce inter-channel crosstalk even at highly-integration.

4 Graded-Index (GI) Circular cores

> Advantages of GI circular core

- ••••• Low propagation loss
- Low inter-channel crosstalk
- ••••• High coupling efficiency with a fiber

Minimum loss of GI profile

It is expected that the propagation loss could be as low as possible, because GI profile confines mode fields around the core center.

Connection Loss Simulation

Link Model

(Solver: FIMM-WAVE, FIMM-PROP)

Core size dependency of the connection loss is simulated.

Connection Loss Simulation

Mode Profiles 50x50 µm SI waveguide

50 μm-φ GI waveguide

50x50 µm GI waveguide

Calculated Results

GI core shows low loss in wide rage of core size at connection 2

Connection Loss Simulation

Mode Profiles 50x50 µm SI waveguide

50 μm-φ GI waveguide

50x50 µm GI waveguide

Calculated Results

THE MOSQUITO METHOD

UTILIZING A MICRO DISPENSER FOR FABRICATING "<u>CIRCULAR GI CORE</u>"

New Fabrication Method: Mosquito Method

Fabrication of circular core less than 50 μ m diameter is investigated for high density wiring.

Dispensing Conditions and Obtained Waveguides

pressure and to scan more quickly.

Fabricated Waveguides and Their Index Profiles

Index profile measured using an interference microscope

Refractive-index profile

Cross-section Core-diameter 40 μ m; Pitch 250 μ m

2D & 3D NFP Image

Interference pattern

PPOWs with GI-circular-core are fabricated successfully.

Comparison between SI and GI Waveguides

SI and GI Core waveguides using the same polymer materials

	Mosquito(GI)	Photolithography(SI)		
Core/Cladding	FX-W712/FX-W713	FX-W712/FX-W713		
Core-diameter	40 µm	40x40 μm		
Pitch	250 μm x 12 ch.	250 μm x 12 ch.		
Waveguide-length	5 cm	5 cm		
Cross-section	250 µm	2000 ден 250 µm		
NFP Image				

Insertion loss and crosstalk of each waveguide are measured.

Propagation loss of the waveguide (ADEKA Corp.) fabricated by Mosquito method is measured by <u>cut-back method (15.5 \rightarrow 5 cm).</u>

FX-W712 (ADEKA Corp.) is expected as one of the low loss waveguide materials.

<u>Result</u>

CI		Launching probe	
GI	SMF	25GI	50GI
Loss[dB]	1.58	1.83	2.52

CI	Launching probe				
51	SMF	25GI	50GI		
Loss[dB]	1.72	2.30	2.68		

* Insertion loss average of 12-channels

GI-core waveguides exhibit lower insertion loss than SI-type.

For high-density wiring, the waveguide with a 125- μ m pitch is fabricated and compared crosstalk value to waveguides with a 250- μ m pitch.

Crosstalk of waveguide with narrower pitch than 250 μ m is lower than SI-WG.

FOR Satisfying the Single-Mode Condition

Insertion Losses

	1	2
Cross-section	→ ← 10 μm	Η 10 μm
Average [dB]	5.31	3.27
Minimum [dB]	4.84	2.17

Low insertion loss achieved

Cross-sections of narrower pitch waveguides

For further narrower pitch, height variation is a promising way.

Core 2 Core 3 Core 1 \rightarrow $40 \mu m$

Fan-out structure is realized.

THE PHOTO-ÅDDRESSING METHOD

FOR FABRICATING "SQUARE GI CORE"

63rd IEEE ECTC – Las Vegas, NV: May 28–31, 2013

Low-Loss Design and Fabrication of Multimode Polymer Optical Waveguide Circuit with Crossings for High-Density Optical PCB

T. ISHIGURE, K. SHITANDA, T. KUDO KEIO UNIV. / YOKOHAMA, JP

Keio University

SUMITOMO BAKELITE CO., LTD.

S. TAKAYAMA, K. MORIYA, T. MORI, K. CHOKI SUMITOMO BAKELITE / UTSUNOMIYA, JP

May 28-31, 2013

Takaaki Ishigure, et al.

How GI-core Waveguide Fabricated?

Concentration Distribution leads to Index Profile

Loss Estimation using Ray-Trace Method

<u>Power-Law Form</u> $n_{co} = 1.553 \quad n_{cl} = 1.536$ $n(x, y) = n_{co} \{1 - 2\Delta [f(x) + g(y)]\}^{1/2} \quad f(x) = \left|\frac{x}{a_x}\right|^p, \quad g(y) = \left|\frac{y}{a_y}\right|^q$

Launch Condition for Ray-Trace Simulation

Results of Simulation

Very low loss in GI-GI despite SI-SI intersection

May 28-31, 2013

Takaaki Ishigure, et al.

Keio University

1858

SUMITOMO BAKELITE CO., LTD.

-30-

GI-Core Crossed Waveguide by Photo Addressing

0 **Transmitted** 0 Chanbels D 0 П

1858

-31-

al. 🔶 SUMITOMO BAKELITE CO., LTD.

Comparison: Simulated & Measured

The 63rd Electronic Components and Technology Conference

May 28-31, 2013

Takaaki Ishigure, et al.

Comparison: Simulated & Measured

The loss of GI-GI is one-order lower than the lowest results of SI-SI. 0.0019 dB/cross The formation of the lowest results of SI-SI. 0.0019 dB/cross May 28–31, 2013 Takaki Ishigure, *et al.*

-33-

Crossing Angle Dependence

May 28–31, 2013

2013

The 63rd Electronic Components

and Technology Conference

Takaaki Ishigure, et al.

We introduce the advantages of GI-Core waveguide as follows:

- Low propagation loss because of the smaller effect of the core-cladding boundary roughness.
- Low inter-channel crosstalk even under smaller pitch due to the optical confinement
- High modal bandwidth

GI-core polymer waveguides will play an important role for high-speed and high-density on-board optical interconnects.

Thank you very much for your attention