

OPTOELECTRONICS PACKAGING FOR EFFICIENT CHIP-TO-WAVEGUIDE COUPLING

<u>G. VAN STEENBERGE</u>, E. BOSMAN, J. MISSINNE, B. VAN HOE, K.S. KAUR, S. KALATHIMEKKAD, N. TEIGELL BENEITEZ, A. ELMOGI

CONTACT GEERT.VANSTEENBERGE@ELIS.UGENT.BE

GENT

Cmst

OPTOELECTRONICS PACKAGING

OPTOELECTRONICS PACKAGING

OPTOELECTRONICS PACKAGING

Embedding of optoelectronics in flex substrates

Ghent Univ. / imec

ULTRA-THIN OPTOELECTRONIC CHIP PACKAGE

"Ultra thin optoelectronic package"

- Thinned commercial (opto)electronic components *
- Embedded in thin & flexible polymer foils **

Component (bare die) thickness ~20µm

Total thickness ~40µm

ULTRA-THIN OPTOELECTRONIC CHIP PACKAGE

© IMEC 2013 GEERT VAN STEENBERGE GHENT UNIVERSITY / IMEC

INTEGRATION WITH POLYMER OPTICAL WAVEGUIDES

- Acrylate, epoxy, silsesquioxanes, or silicone based
- Typical propagation loss below 0.1dB/cm

Additional bending and stretching loss

Cmst

INTEGRATION WITH POLYMER OPTICAL WAVEGUIDES

Sequential build-up approach Typical total optical loss 6dB

INTEGRATION WITH POLYMER OPTICAL WAVEGUIDES

Modular approach

Typical total optical loss 3dB

INTEGRATION WITH OPTICAL FIBERS

EU PROJECT PHOSFOS PHOTONIC SKINS FOR OPTICAL SENSING

EU PROJECT PHOSFOS PHOTONIC SKINS FOR OPTICAL SENSING

EU PROJECT FIREFLY MULTILAYER PHOTONIC CIRCUITS

Challenges

- Integration of waveguides and VCSELs
- Integration of waveguides and glass fibers
- Integration of photonic crystals and waveguides

Multilayer Photonic Circuits made by Nano-Imprinting of Waveguides and Photonic Crystals

FIREFLY

EU PROJECT FIREFLY VCSEL – WAVEGUIDE INTEGRATION

EU PROJECT FIREFLY WAVEGUIDE – FIBER INTEGRATION

Introduce new degrees of parallelization

WDM | multi-core | multi-level

Scale line rate to 40G

Optoelectronics assembly
Accurately defining micro-bumps using
"Laser Induced Forward Transfer" (LIFT)

Incident laser pulse (excimer 248 nm, 7 ns) Carrier Donor

Adhesive bonding / thermocompression

Optoelectronics assembly
Flip chip bonding of the die

= chip placement + adhesive curing

+ thermo-compression bonding

- Flip chip bonder chuck
 - Substrate + metal tracks + adhesive bumps
- OE chip (active area facing down)

VCSEL test chip (1x4 array)

Optoelectronics assembly

- Characterization of bonded VCSEL/PD chips
- Shear testing after bonding

3

chip encapsulation

UNIVERSITEIT

ACKNOWLEDGEMENT

THANK YOU

